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SUMMARY

It is sometimes necessary to estimate correlations In samples that have been range restricted
due to selection. These correlations are often diminished when compared to their population
values. A correction for this circumstance Is the subject of a proof which is discussed In the
context of a copter-aided simulation procedure to study the nature and behavior of the
correction. / 57,,.~ E~ ,2~ 
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PREFACE

The present effort was completed as part of Work Unit 77191846, Development and Validation
of Enlisted Selection Methodologies. It provides advanced statistical support for manpower
programs.

The authors are grateful to the Air Force Office of Scientific Research for support of the
effort. Drs. Valentine and Curran are thanked for their encouragement and facilitation of the
effort.
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OOL FOR STUDYING THE EFFECTS OF RANGE RESTRICTION
ON CORRELATION COEFFICIENT ESTIMATION

I. INTRODUCTION

Let X and Y be two random variables defined on a population P. Let 0 be a sub-population
of P and suppose that we have a random sample selected from 0. X1 .... X, and Y1 ..... Y, will
denote the X and Y data collected from this sample. The traditional statistic for estimating the
correlation between X* and Y* [Px.,,.] is

E.(x, (Y,
r = i

n-

However, this may not be a very good estimate of Px,y. The need to know Px.y when you have
only a random sample from 0 is a problem that occurs quite naturally and it has been
investigated for some time. The most widely used method to deal with it has been to use a
correction formula first developed by Pearson (1903), and then extended by Lawley (1943).
This formula applies when certain assumptions are satisfied. These assumptions are basically
the classical linear regression model, and will be described in detail later. The formula applies
only when Px,., is known exactly. It is not uncommon to take a formula that holds for population
parameters and apply it instead to statistics used to estimate those population parameters.
Unfortunately, this approach comes with no guarantees. It is not assured to provide an unbiased
or even a very good estimation. Finding a mathematical description for the sampling distribution
of the Pearson statistic appears to be very difficult. At least it has defied solution so far.
Rather than seeking a mathematical solution, we decided instead to take a computational
approach and write a Monte Carlo simulation program. The purpose of this program is to
evaluate, under varying conditions, the accuracy of the traditional r statistic and of the Pearson
statistic in estimating Px,y. It will also be useful for testing statistics that use correlation
coefficients as inputs.

II. NOTATION AND OBJECTIVES

We will use the notation of Lord and Novick (1968). Assume that the members of an
organization were admitted to the organization by virtue of having passed a battery of tests.
These members are called the selected group or the restricted population and will be denoted
by 0. These members plus those that were denied entry constitute the applicant group or the
unrestricted population and will be denoted P The tests that were used as a basis for selection
are viewed as random variables on P and are called the explicit selection variables. Any other
tests that are given to the members of the selected group 0 are called incidental selection
variables. All random variables are assumed to be defined on P. If X Is a random variable on
P then the restriction of X to the selected group 0 will be represented by the notation X*.

Our objective is to study the sampling distribution of two statistics. The first is the standard
sample correlation coefficient, r, which is calculated using a random sample from 0. The second
is the Pearson correction formula for range restriction. It is calculated using the sample
covariance matrix for the explicit selection variables based on data from the applicant group
P, plus the sample covarlance matrix for all variables based on the selected group 0.

.... ... 1



In this study it is assumed that the most general type of selection criterion is

1 :5 clX1 + ... - cnveXnve -5 h.

where h may be infinity, I may be negative infinity, and nve is the number of explicit selection
variables.

III. CORRECTION IN THE TWO-VARIABLE CASE

The correction formula for range restriction is usually referred to as the Pearson correction
formula. However, it was Lawley (1943) who established the minimum assumptions necessary
for its application. In order to understand Lawley's theorem, it is necessary to look at a couple
of special cases in this and the next section. The proof of the general theorem is by generating
functions and is not a very instructive proof. The proof of the present special case, however,
is instructive and an outline of this proof will be given.

Let X be the only explicit selection variable and let Y be the only incidental selection
variable. Hence we have X and Y defined on P, and X* and Y* defined on 0; and the members
of 0 are selected on the basis of their X scores.

Assumption 1. (Unearity) The true regression function of Y on X is linear. In other words,

Y= a+bX+E,

where a and b are constants, E is a random variable, and the expected value of E given x is zero, for all x.

Note: It is not necessary to assume that X and E are independent. Linear regression is enough to imply that
cov (X, E) = 0, which Is needed for the proof of theorem 1. The proof that cov (X, E) = 0 follows directly
from the definition of covariance and hence is omitted.

Assumption 2. (Homoscedasticity) The conditional variance of Y given x, does not depend on x. In other

words, aE does not depend on x.

Note: Assumption 2 still does not imply that X and E are independent.

Theorem 1. Under assumptions 1 and 2

a2X P2X*,Y*rY + ( 1

proof: Given that cov(X, E) = 0, it is a matter of simple algebraic manipulation and the relationship

cov(7 aiXi, .bjYj) = 1 aibjcov(Xi,Yj)
i j j

to show that

a x Y (2)
ax
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• E = a2y (1 - P2 XY). (3)

But now assur ption 1 and Equation 2 imply that

ay cry*

SPX*,Y* - (4)
XY- .. X

while assumption 2 and Equation 3 imply that

o (1 ,p2 X,y) = c2y* (1 p2X*,y*).)

These two equations are exactly equivalent to the conclusion of the theorem. That is to say, you get the
conclusion by solving for o2 y In Equation 4, putting that in Equation 5 and solving forPx y .

It is important to understand that the conclusion depends exactly on linearity and
homoscedasticity and the fact that Y is not explicitly restricted. No assumption of normality is
needed. The population parameters that appear on the right side of the formula will, of course,
not be known and so the statistic based on this theorem becomes

which is the Pearson statistic for two variables. The sampling distribution of this statistic does depend on
the joint distribution of X and Y. The simulation program described later assumes that this distribution Is the
bivariate normal. From looking at a few examples using that program it appears that the corrected statistic
is always a slight underestimate. In the cases examined, this downward bias seems to be so small that it
could easily be ignored.

Notice that if c22X* < a 2 X, a it will be for the type of restrictions we are considering,
then P 2X*,y* < P2X,Y- So if rX*,Y* is used ipstead of the correction formula, this gives
an estimate for a parameter that is smaller than P X,U. This last statement is not true when
there are more than two variables. This will be discussed in the next section.

The effect of range restriction on population parameters in the two-variable case is easily
visualized. Think of a correlation coefficient as a measure of how well we can perform the
following task. Administer test X to two randomly chosen individuals and predict which of these
individuals would score highest on test Y. There are three characteristics of the joint density
function between X and Y that determine how well we can predict. The first Is the slope of
the regression line. This does not change with a restriction on X. The fact that it does not
change is reflected by Equation 4, which Is part of the proof of theorem 1. It is obvious that
a greater slope leads to greater chance of successfully predicting which individual will have the
larger Y score. The second Is oaE This does not change with a restriction in X. The fact that
it does not change is reflected in Equation 5, which is the other significant equation in the
proof of theorem 1. It is clear that a smaller oaE leads to a greater chance of picking the
correct individual. The way this is reflected in the equation

ax
PX,Y = b_

3ry

3



is that if OE is made smaller without changing oX or b, then ay will become smaller. The third factor is the
variance of X. It is clear that we have a better chance of choosing the correct individual if the X values of
randomly chosen people are spread out rather than being packed together. This isthe factor that is depressed
as a result of selection. As already mentioned, for the type of selection in common use the variance of X* is
always smaller than the variance of X. Hence in the two-variable case, selection always causes under-
estimation of the correlation coefficient If the correction formula is not used.

One of the benefits of presenting a proof of theorem 1 and then discussing how the three
factors affect correlation coefficients is that one can see how correlation estimation depends
on linearity and homoscedasticity. If one or both of these conditions fail drastically, then it will
be very difficult to get a decent estimate. A few comments about this problem will be made
at the end of this paper.

IV. THREE VARIABLES WITH ONE EXPLICITLY RESTRICTED

Let X be the explicit selection variable and let Y and Z be incidental selection variables. Y

is the criterion or dependent variable and X and Z are the independent or predictor variables.

Assumption 1. The true regressions of Z on X, and Y on X, are linear.

Assumption 2. The variance of Y given X, the variance of Z given X, and the covariance of Z and Y given
X, do not depend on X.

Theorem 2: Under assumptions 1 and 2

"Y y . . . .ix- , '
or×. \ rX

P2.Y ;.c 4-

This correction formula is slightly more complex and it permits the construction of examples
where the correlation in the restricted population is larger than the correlation in the unrestricted
population. Levin (1972) refers to these cases as "Pseudo-Paradoxical." The terminology probably
stems from the fact that it Is widely assumed in the literature that restriction always causes an
underestimate. This would certainly be expected on the basis of our discussion in the two-variable
case. Notice that with the formula appearing in theorem 2 and a little algebra it is easy to
characterize these "Pseudo-Paradoxical" situations In the three-variable case. In these cases the
uncorrected estimation is an overestimation. Taking examples from Levin (1972), the correction
procedure was applied and the simulation showed each time that the corrected value was very
good. It seemed that the corrected estimate was slightly low in each case but the estimate
was so close that this low estimation might not be a real effect. In any case the bias appears
to be so slight that it is not practically significant. The interesting fact is that the correction
statistic based on theorem 2 works well in these cases, at least when the joint distribution of
the three variables is multinormal.

4



V. THE GENERAL CASE

Let X be the p-element vector of explicit selection variables, and Y the n-p element vector
of incidental selection variables on the applicant group. Y will contain one criterion variable
and several predictor variables. Then X* and Y* represent the explicit and incidental selection
variables on he selected group. Let

= [Vp, Vp,n-p]

I Vnp,p Vn-p~n-p

represent the variance-covariance matrix for X*, Y*. The first p rows and columns refer to the
components of X*. So Vp,p is the variance-covariance matrix of X*, Vn.p,n- p is the
variance-covariance matrix for Y*, Vpn- p gives the covariances between X* and Y*, and Vn.p, p
is the transpose of Vp,n-p. In this discussion, V refers to selected data and W refers to applicant
data. In our application, V will be the estimate of the variance-covariance of all tests and it is
based on selected data. The restricted population consists of those who were accepted into
the organization so we have data on all tests for these people. Let

W=Wp,p Wp,n-p

[Wn.pp Wn-pn-p]

be the matrix of variance-covariance for the unselected data. We will estimate Wp,p from the data since
we have data for the explicit selection variables on all applicants. The Wp,n.p, Wn-p,p, and Wn-p,n-p are
the matrices that we wish to know and will be given to us by the theorem. Wn.p,p is, of course, the
transpose of Wp,n.p; so, we will just give an expression for Wp,n.p when we state the theorem. The follow-
ing statement of the theorem is taken from Birnbaum, Paulson, and Andrews (1950).

Assumption 1: (Linearity) For each j the true regression of Yj on X is linear.

Assumption 2: (Homoscedasticity) The conditional variance-covariance matrix of Y given X does not
depend on X

Theorem 3: Under assumptions 1 and 2

W, p,= Wpp, V -JVp.,,_p and

S= v._, _, - V _ P'(V3- I - V - W P.3V; 5 L )VP..

Lawley proved this theorem in 1943 using moment-generating functions. Both of the earlier
theorems (1 and 2) are just special cases of theorem 3. With some algebraic manipulations
the reader can verify this by writing out the entries of the matrix and comparing them with the
formulas in the earlier theorems. Remember that the matrices of Lawley's theorem are
variance-covariance matrices and so should be converted to correlation coefficients for the
purposes of comparison.

Notice that the theorem says nothing about tt-e types of restrictions that are allowed.
Restrictions of any type on the X variables will preserve the linearity and homoscedasticity.
However, if there are explicit restriction variables that are not known and hence not included
in the equations of theorem 3, then the accuracy of the corrected statistic suffers. The conditions
specified in Lawley's theorem are not met in this case.

5



VI. AN EXAMPLE

The following data are taken from Air Force performance measurement research records.
They are the scores (Maler & Sims, 1986) on the 10 subtests of the enlistment qualification
battery (variables 1-10) arid a performance test (variable 11) (Green & Wing, 1988). Table 1
shows the correlations of these variables as observed in a sample from the restricted population.
Hence they are not corrected for range restriction.

Table 1. Restricted Data

1.000
0.143 1.000
0.568 0.216 1.000
0.381 0.244 0.537 1.000
0.011 0.225 0.162 0.185 1.000
0.112 0.251 0.200 0.157 0.583 1.000
0.130 0.235 0.223 0.254 -.078 -.042 1.000
0.371 0.381 0.271 0.192 0.244 0.320 -.125 1.000
0.342 0.172 0.296 0.406 -.057 0.080 0.475 0.220 1.000
0.308 -.030 0.161 0.018 -.158 -.039 0.451 -.018 0.283 1.000
0.141 0.393 0.035 0.118 0.110 0.236 0.159 0.298 0.250 0.077 1.000

Table 2 shows the correlations of the first 10 variables (explicitly restricted variables) as
calculated using a sample from the unrestricted population. Pearson correction will not change
these values. They are the best estimates for the correlation coefficients between the explicitly
restricted variables. Notice that some estimates have changed from slightly negative to significantly
positive.

Table 2. Unrestricted Data

1.000
0.722 1.000
0.801 0.708 1.000
0.689 0.672 0.803 1.000
0.524 0.627 0.617 0.608 1.000
0.452 0.515 0.550 0.561 0.701 1.000
0.637 0.533 0.529 0.423 0.306 0.225 1.000
0.695 0.827 0.670 0.637 0.617 0.520 0.415 1.000
0.695 0.684 0.593 0.521 0.408 0.336 0.741 0.600 1.000
0.760 0.658 0.684 0.573 0.421 0.342 0.745 0.585 0.743 1.000

Table 3 shows the correlations presented in Table 1 after the correction procedure has been
applied. The last row of correlations of the subtests with variable 11 have now been corrected
for range restriction. It is seen that these correlations have changed considerably in the process
of being corrected for range restriction. These corrected values are the best available estimates
for these correlation coefficients.

6



Table 3. Corrected Data

1.000
0.722 1.000
0.801 0.708 1.000
0.689 0.672 0.803 1.000
0.524 0.627 0.617 0.608 1.000
0.452 0.515 0.550 0.561 0.701 1.000
0.637 0.533 0.529 0.423 0.306 0.225 1.000
0.695 0.827 0.670 0.637 0.617 0.520 0.415 1.000
0.695 0.684 0.593 0.521 0.408 0.336 0.741 0.600 1.000
0.760 0.658 0.684 0.573 0.421 0.342 0.745 0.585 0.743 1.000
0.596 0.749 0.487 0.489 0.465 0.433 0.503 0.680 0.640 0.570 1.000

VII. GENERAL DESCRIPTION OF THE SIMULATION PROCESS

The program was written In PASCAL and is currently running on an IBM-compatible
microcomputer. The joint distribution of all of the random variables is assumed to be multinormal
in the unrestricted population. The inputs to the program are listed here for reference and they
will be explained later as we discuss the program.

The number of variables [nvJ and their names [vnamel
Unrestricted population mean and std-dev [mu, sig]
The correlation coefficients in the unrestricted population [rho]
The number of explicitly selected variables [nve] the first nve entered
The number of restrictions [nr]
The coefficients of the explicitly selected variables [ncoeff]
Cutoff value for each restriction [cutoff]
Size of the unrestricted population [nwp]
Size of the restricted population [nvp]
The number of times the experiment will be repeated [reps]
The two variables of interest in the list of variables [intl ,int2]

Figure 1 below is an example of a file describing the input to a run. The first line says
that there are 3 variables in this case. The next three lines give the names, means, and
standard deviations of the three variables. In this case they each have mean 0.0 and standard
deviation 1.0. The next three lines give the correlation matrix for the three variables. So the
coefficient for (x,y) is 0.86, for (x,z) it is 0.0, and for (yz) It Is 0.43. The next line gives the
number of explicit selection variables. There Is 1 in this case and so X is the only explicit
selection variables. Then it is specified that there is only 1 restriction (selection) and that the
restriction is X > 0.0.

The selected group will consist of those persons getting a score of zero or greater on the
X test. The second to last line says that the variables of interest are 2 and 3 (i.e., Y and Z).
Data and a histogram of the distribution will be given for the uncorrected r between X and Z
and the same information Is given for the Pearson correction statistic. The program calculates
the Pearson correction statistic using theorem 3 from the last section. The line will be explained
after the following discussion.

7



3
x 0.0 1.0
y 0.0 1.0
z 0.0 1.0

1.00 0.86 0.00
0.86 1.00 0.43
0.00 0.43 1.00

1 # of explicitly restricted variables
1 number of restrictions
1.0 0.0
2 3 variables of interest
1 50 100

Figure 1. An Input File.

Creating a multinormal observation is equivalent to simulating one individual. In the above
case this means getting three values,--one for each of the three test scores X, Y, and Z. Each
multinormal observation is part of the applicant group and is also a member of the selected
group if the scores satisfy all of the restrictions. For the present case this means that the score
on the X test must be at least zero. One experiment is simulated by generating observations
until two conditions are satisfied. There must be at least nwp observations in the applicant
group and there must be at least nvp observations In the selected group. For most cases we
set nwp = 1 and then the only restriction is that we have at least nvp observations in the
selected group. One run of the program consists of simulating reps experiments. The last line
of a file which describes a run gives, nwp, nvp and reps in that order. In Figure 1, nwp = 1,
nvp = 50, and reps = 100.

When program corr begins, it will ask if the user wants to enter the data necessary to
describe a run or to"give the name of a file which contains the data in the expected format.
The file in Figure 1 is called test4 and so we can just give that name to corr and the run is
specified by the input parameters in Figure 1. The reason that test4 is in the expected format
is that corr wrote the file on a previous run. It was written when corr executed and it was
specified that data would be entered from the keyboard and that these'data were to be saved
in a file named test4. Now if one were familiar with PASCAL read statements, they could use
a text editor to change some of the parameters and use test4 for another run. After corr
executes, the data necessary to produce the histograms of the corrected and the uncorrected
statistics are in two Internal files and one must run program plot which will read these internal
files and display these data on the printer.

For each experiment corr calculates each of the following quantities.

bO and bl = the estimates of the regression parameters
statu = the uncorrected estimate of the correlation coefficient
statc = the corrected estimate of the correlation coefficient calculated

with the equations of theorem 3

Hence corr will generate reps copies of each of these parameters. In each case the two
implied variables are Intl and int2, and the regression parameters are for int2 on Intl. In the
case of bO and bl, the only values retained are the totals so that after the reps experiments
have been generated, the mean values of these parameters may be calculated. In the case

8



tatc, each oiserved value is retained and written to the files pltu-dat and pltc.dat,

,p'cl ,, y As me'! ned earlier, the user can run plot to have all these results displayed.

VIII. PROGRAM METHODOLGY

One can see that the correction procedure, as specified in theorem 3, requires taking the
inverse of a matrix. This is accomplished with the Gauss-Jordan matrix inversion algorithm In
unit matops. This unit also contains algorithms to multiply and to subtract matrices.

Unit normgen includes all of the routines necessary to generate a multinormal observation
with the correlations specified in the input file. Suppose that there are nv variables. The first
step is to generate nv Independent standard normal observations. This is accomplished by
repeated calls to algorithm p in Knuth (1969). The desired multinormal distribution results from
taking a linear transformation of these independent standard normal observations. This
transformation is obtained by multiplying the independent observations and the matrix A which
is defined to be that unique matrix which is upper triarigular and satisfies AAT = C. In this
last equation, AT refers to the transpose of A, and C is the variance-covarlance matrix of all
variables in the unrestricted population. For a complete discussion of this procedure, consult
Shreider (1966) or Johnson (1987). The matrix A is calculated by the recursive procedure solve
called by transpar in unit normpar.

IX. RECOMMENDATIONS

Much time has been spent in writing the program; hence, most of these recommendations
have to do with proposed applications of the tool. However, based on a limited amount of
experimentation, a few observations seem appropriate.

The correction statistic seems to work well under the conditions of the theorem. It seems
to have a downward bias but, for the cases we considered, it was always preferable to the
uncorrected statistic. As can be seen from the proof of theorem 1, neither the corrected nor
the uncorrected statistic will be accurate if the joint distribution of all variables fails to satisfy
the linearity condition or the homoscedasticity condition. After fully understanding the theorem,
and a little experimentation with the simulation program, It seems likely that the best strategy
is to always use the Pearson correction statistic instead of the uncorrected statistic.

There are a number of studies that could be pursued with the use of the simulation program.
A plot of the sampling distribution of the Fisher Z-transformatlon of the corrected statistic looked
approximately normal, as might be expected. The Z-transformatlon could form the basis for a
procedure that could be used to construct confidence intervals for the true correlation coefficient
based on the Pearson statistic. It might be instructive to modify the program slightly so as to
allow the joint distribution of all variables to be specified In the Input. This would allow one to
test the confidence intervals procedure using actual data Instead of stochastically generated
multinormal data.

It would be useful to know how much accuracy is lost In the corrected statistic when one
or more explicit selection variables have been omitted from the model. Based on a few
experiments, the accuracy of the corrected statistic is diminished by the omission of explicit
selection variables. It would be of value to know the magnitude of this effect. This is important
since some people still use the two- or three-variable formulas even when there Is more than
one explicit selection variable. The simulation program Is ideally suited to answer this question.

9



REFERENCES

Bimbaum, Z.W., Paulson, E., & Andrews, F.C. (1950). On the effects of selection performed on some
coordinates of a multi-dimensional population. Psychometrika, 15(2), 191-204.

Green, B.F., & Wing, H. (Eds.), (1988). Analysis of job performance measurement data. Report of a
workshop, Washington, DC: National Academy Press.

Johnson, M.E. (1987). Multivariate statistical simulation (p.49). New York: John Wiley and Sons.

Knuth, D. (1969). The art of computer programming: Vol.2. Seminumerical algorithms (p.104). Menlo Park,
CA: Addison-Wesley.

Lawley, D.N. (1943). A note on Karl Pearson's selection formulae. Proceedings of the Royal Society of
Edlngburg. Sect. A. (Math & Psys. Sec.), 62, Part I, 28-30.

Levin, J. (1972). The occurence of an increase in correlation by restriction of range. Psychometrika, 37(1),
93-97.

Lord, F.M., & Novick, M.R. (1968). Statistical theories of mental test scores. Menlo Park, CA:
Addison-Wesley.

Maier, M.H., & Sims W.H. (1986). The ASVAB score scale: 1980 and World War II (CNR 116). Arlington, VA:
Center for Naval Analysis.

Pearson, K. (1903). On the Influence of natural selection on the variability and correlation of organs. Phil.
Transactions of the Royal Society A, 200, 1-66.

Shreider, Y.A. (1966). The Monte Carlo method (p. 328). Elmsford, NY: PerGamon Press.

10


